pytorch实现LeNet模型MNIST手写识别

模块导入,常量参数设定

1
2
3
4
5
6
7
8
9
10
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torchsummary import summary

BATCH_SIZE = 512
EPOCH = 20
DEIVCE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

数据加载

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
'data',
train=True,
download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=BATCH_SIZE, shuffle=True)


test_loader = torch.utils.data.DataLoader(
datasets.MNIST(
'data',
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=BATCH_SIZE, shuffle=True)

LeNet模型搭建

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
# nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,dilation=1,groups=1, bias=True)
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 16, 3)
self.pool2 = nn.MaxPool2d(2)
# nn.Linear(in_features, out_features, bias=True)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
out = F.relu(self.conv1(x)) # 24
# nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1,return_indices=False,ceil_mode=False)
# max_pool2d(*args, **kwargs)
out = self.pool1(out) # 12
out = F.relu(self.conv2(out)) # 10
out = self.pool2(out) # 5
out = out.view(out.size(0), -1) # flatten
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
out = F.log_softmax(out,dim=1)
return out

查看模型结构

1
2
model = LeNet()
summary(model, (1,28,28))

模型训练测试函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
model = LeNet().to(device)
optimizer = optim.Adam(model.parameters())

def train(device, model, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad() # zero all gradients
output = model(data)
loss = F.nll_loss(output, target) # calculate loss
loss.backward()
optimizer.step() # update all parameters
if (batch_idx + 1) % 30 == 0:
print(f"Train Epoch {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} Loss: {loss.item():.6f}]")


def test(device, model, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data) # predict class probability
test_loss += F.nll_loss(output, target, reduction='sum').item() # superposition whole batch loss
pred = output.max(1, keepdim=True)[1] # return max probability index
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)
print(f'\nTest Epoch: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} ({100. * correct / len(test_loader.dataset):.2f}%)\n')

模型训练,测试

for epoch in range(1, EPOCH + 1):
    train(DEIVCE, model, train_loader, optimizer, epoch)
    test(DEIVCE, model, train_loader)